
JOURNAL OF MATERIALS SCIENCE 28 (1993) 989-993 
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The internal friction of high-purity aluminium during the process of plastic deformation was 
measured by a middle torsion pendulum on a modified tensile testing machine. The effects of 
tensile strain rate, &, in the range of 0.73 x 1 0 -6 to 50 x 10 6 S - 1  and frequency of internal friction 
measurement, f, in the range of 0.38 to 2.6 Hz were studied. The results showed a non-linear 
dependence of internal friction, Q-l, on & and f 1, or on Uc0 (co = 2= f). The interrelationship 
between internal friction during the process of plastic deformation and dislocation motion, and 
the effect of non-linearity on the dynamic behaviour of dislocations are discussed. 

I .  I n t roduc t ion  
Low-frequency internal friction during the process of 
plastic deformation, Q-Z, and the technique of 
measurement using a middle torsion pendulum, were 
first reported by Maringer [1]. Subsequently, the Q 1 
versus ~ (tensile strain) curves for A1, Cu and Armco- 
Fe samples were determined by K~ et al. [2]. The 
fairly high values of Q- 1 obtained by these investiga- 
tors were attributed to the process of plastic deforma- 
tion because they were observed only when + # 0. If 

was changed from ~ 4= 0 to g = 0 suddenly (i.e. keep- 
ing a constant), the Q-  1 value dropped almost at once 
to a low background value E2]. Postnikov et aI. [3] 
and Felthan and Newhan [4] investigated the effects 
of tensile strain rate ~ and angular frequency of inter- 
nal friction measurement co on Q- l ,  and reported 
linear dependence of (2-1 on k and on c0-1. More 
recently, the internal friction (IF) during the process of 
plastic deformation for Armco-Fe at values of strain 
within the yield plateau (i.e. Q-  1 did not change with 
e) was studied by Zhang et al. [5], and a similar linear 
dependence was also observed. 

Various theories have been presented in order to 
interpret these results. Postnikov etaI.  [3] and 
Felthan and Newhan [4] associated Q- 1 with a ther- 
mal activation process and obtained a linear depend- 
ence of (2-1 on g and c0-1 as Q - 1 = [3(Uo) ' where [3 is 
a constant. K6 and Zhang [6] and Zhang [7] at- 
tributed (2-1 to the movement of dislocations. They 
obtained a similar expression but the parameter 13 was 
a function of stress o instead of being a constant. They 
also obtained a dislocation dynamics expression relat- 
ing the velocity V of moving dislocations to the effect- 
ive stress. 

The above theories were, however, based on the 
linear dependence of Q- t on g and c0-1 within a lim- 
ited range of ~ and o. It is therefore important to 
extend this investigation by broadening the range of 

and co studied. The areas of particular interest are the 
effects on Q- 1 by varying ~ at low, but constant co, and 
by varying co at high, but constant k. 

The present investigation aims to extend the range 
of previous studies for high-purity aluminium. The 
significance of the results obtained on the dynamic 
behaviour of dislocations is discussed. 

2. Experimental procedure 
The experimental technique used has been described 
previously [1, 2, 5]. The internal friction of high- 
purity aluminium during the process of plastic de- 
formation was measured by a middle torsion pendulum 
on a modified tensile testing machine. The tensile 
strain rate g and frequency of measurement f used in 
the present investigation were ~1 = 0.73x 10 +6 S -1 ,  

g2 = 1.53 x 10 - 6  s -1 ,  E3 = 2.94 x 10 - 6  s -  1, ~;4 = 6.35 x 
10-6 S-1, g5 = 12.1 • l0 -6 S - 1 ,  ~6 = 25.3 x 10 -6 s -1, 
~ 7 = 5 0 •  - 1  and f 1 = 0 . 3 8 2 H z ,  f 2 = 0 . 5 H z ,  
f 3 = 0 . 8 3 6 H z ,  f g = l . 0 H z ,  f s = 2 . 0 3 H z ,  f 6 =  
2.63 Hz, respectively. All measurements were made at 
room temperature. 

The wire-shaped specimen was prepared from a 
99.9991% pure aluminium rod, about 8 mm in dia- 
meter and 50 mm in length, manufactured by the 
Light Co. (UK). 

In order to avoid contamination by oil or other 
metals during specimen preparation, the bar was care- 
fully hot-forged to about 4.5 mm diameter by hand 
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hammering at 200 to 250 ~ with repeated cleansing 
by dilute KOH solution before cold-drawing to 
1.0 mm diameter. The last treatment was annealing at 
400 ~ for 0.5 h followed by furnace-cooling. 

3. T h e o r y  
A common measure of the internal friction in the free 
decay mode, such as that in the middle pendulum 
used, is the logarithmic decrement 6. When 6/re or Q - 
is small, e.g. much less than 0.05, we have 

Q-l -12re  AWw ~6 rcnl In (A~~ ~ ) (1) 

where W is the total energy of vibration, A W/W the 
fractional energy loss per cycle, and Ao and A, are the 
zeroth and nth amplitude of the vibration, respec- 
tively. When Q-~ or 6/re is large, for example more 
than 0.05, Equation 1 is not accurate. The precise 
relationship between Q-1  = (1/2re) (AW/W) and 6/re 
depends on the mechanism of internal friction, but we 
can obtain a simple approximate relationship by the 
following calculations. 

Using the expansion form of 6 = ln(Ao/A~) = In X, 
we have 

6 = l n X - ~ + z -  + ... (2) 
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Figure 1 Effect o f  f r equency  on  the  5/~ versus  e curves  at  

g = 5 0 x l 0  6s -X:  ( 0 )  f l = 0 . 3 8 2 H z ,  ( �9  f 3 = 0 . 8 3 6 H z ,  (11) 

f5 = 2.03 Hz,  ([~) f6 = 2.63 Hz.  The  c o r r e s p o n d i n g  c~ versus  e curve  

is a lso  shown .  

for any value of 6, and 

Q-I  1 A W  A 2 2 

(3) 

Thus we can relate 6 to Q 1. The function q(X) 
depends on the number of terms incorporated in the 
expression for 6 in Equation 2. For example, if two 
terms are included, when 6/re = 0.22, X = 2, 
q ( X ) = 0 . 6  and Q-1=0.133;  when 6/rc=0.03, 
X =  1.1, r l ( X ) = 0 . 9 1 a n d Q  ~ =0.028. 

In this paper we define 6/re as the apparent internal 
friction and use the true value of Q-I  calculated by 
Equation 3 for comparison with theoretical analysis. 

4. R e s u l t s  
The influence of the frequency of measurement on 6/re 
during the process of plastic deformation for high- 
purity AI at high strain rate ( = 5 0 •  -1)  is 
shown in Fig. 1. The stress strain (cy versus s) curve is 
also shown in the figure. The frequencies of 6/re 
measurement are 0.382 Hz (fl), 0.836 Hz (f3), 2.03 Hz 
(fs) and 2.63 Hz (f6), respectively. It is clear that 6/re 
decreases with increasing frequency of measurement. 
The 6/re versus s curve exhibits a maximum value after 
macro-yielding of the samples. For e > 1%, 6/re shows 
a slightly increasing trend with increasing ~ at low 
frequencies. At the highest frequency f6, 6/~ exhibits 
a decreasing trend with increasing ~. 

The influence of frequency of measurement on 6/~ 
at low strain rate (~a = 2.94x 10 -6 S -1) is shown in 
Fig. 2. Also shown in the same figure is the corres- 
ponding o versus e curve. It is clear that 6/re decreases 
with increasing frequency of measurement. In Fig. 2, 
one sample was tested at a constant frequency, 
f 4 ( =  1.0 Hz), throughout. The other sample was tes- 
ted at three frequencies: f l  (0.382 Hz, when ~ < 3.6%); 
f2 (0.5 Hz, from s = 3.7% to 4.1%) and f4 (1.0 Hz, 
when ~ > 4.1%). The maximum after yielding ob- 
served in Fig. 1 at high strain rate disappears in Fig. 2 
at low strain rate. The 6/~z versus a curves are almost 
parallel to the abscissa after macro-yielding of the 
sample. The coincidence of the 6/re versus e curves of 
two samples when a > 4.1% suggests that different 
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Figure 2 Effect of  f r equency  on  the 8/re versus  e curves  a t  ~ - 2.94 • 10 6 s 1 for  fa = 0.386 Hz,  J~ = 0.5 Hz,  f4  = 1.0 Hz.  O n e  s ample  ( �9  

was  tes ted a t  th ree  f requencies ,  fl,  f2 a n d  f4-  The  o t h e r  s a m p l e  ( O )  was  tes ted a t  f4  only.  The  c o r r e s p o n d i n g  c~ versus  s curve  is also shown .  
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Figure 3 Effect of tensile strain rate, /;, on the 6/'~ versus s data at constant  f =  2.03 Hz;. /;t = 0.73 x 10 .6 S -1, /;2 = 1.53 x t0 - ~  s 1, 
&3 = 2.94 x t0 -6 s ;, F-4 = 6.35 x 10 -6 s ;,/;5 = 12.1 x 10 -6 s -  ~,/;6 = 25.3 x 10 -6 s -  1. The corresponding cy versus ~ curves are also shown. 

samples possess the same 8/rt value provided ~, f and 
e are the same. It also implies that the reproducibility 
of internal friction measurement during plastic defor- 
mation is rather good and is unaffected by a change in 
the sample or in the frequency of vibration. 

The effect of strain rate + on the 6/Tt versus e curve 
at constant frequency of measurement f5 ( = 2.03 Hz) 
is shown in Fig. 3. The sample is stretched to e ~ 1% 
with +3 = 2.94x 10 6S 1, then to e ~ 1.2% with 
~1 = 0.73% x 10 .6 s -1, to a ~ 2.85% with ~3, to 
a ~ 3 . 3 %  with k~, and then to e ~ 4 . 7 %  with 
~2 ( =  1.53 x 1 0 - 6  S - l ) ,  ~;4 ( = 6 . 3 5  X 1 0 - 6  S -  1), ~:3, 

~s ( = 12.1 x 10 - 6  s - l ) ,  &6 ( =25.3 x 10 -6 S i), ~;3 and 
ka- As shown in Fig. 3, 6/~z increases with increasing 

and is almost parallel to the abscissa, especially at 
low strain rates. 

In order to show the effect of & and f more clearly, 
we transform the 6/~ values into Q 1 using Equation 
3, and plot curves of Q-~ against ~ at constant 
f (Fig. 4), and Q-  1 against c0-1 at constant ~ (Fig. 5). 
Fig. 4 shows the non-linear effect of strain rate, &, on 
Q- 1 during plastic deformation at constant frequency 
of measurement. Fig. 5 shows the non-linear effect of 
frequency of measurement on Q - t  at constant strain 
rate. These figures show that, unlike the previously 
reported results [3 5], Q ~ exhibits a non-linear de- 
pendence on ~ and on co-~. The effect is more appar- 
ent at low frequencies and high strain rates. 

Fig. 6 shows a plot of Q- 1 against &/co (all symbols 
in Fig. 6 coincide with those in Figs 4 and 5). The 
non-linear dependence of Q-  ~ on &/co is apparent. The 
scatter of data in this figure compared with Figs 4 and 
5 suggests that the dependences of Q-~ on & and on 
co -~ are not the same. Even if 6/re is used as an 
ordinate, the dependence of 6/~ on ~/co is still non- 
linear. 

5. Discussion 
5.1. Interrelationship between Q-~ and 
It is well established that ~ = C~pmbv, where ~ is an 
orientation factor, Pm is the density of mobile disloca- 
tions, b is the Burgers vector, and v is the average 
velocity of the dislocations. Since the strain rates con- 
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Figure4 The non-linear dependence of Q-1 on /; for (O)  

j'~ = 0.382 Hz and ( I )  fs  = 2.03 Hz; ~ = 3%. 
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Figure5 The non-l inear dependence of Q-1 on co - I  for ( 0 )  
~ ; 7 = 5 0 •  6 s I a n d ( + ) / ; 3  = 2 . 9 4 x 1 0 - 6 s - l ; c = 3 % .  

sidered in this paper are low, Pm can be treated as 
independent of ~ at a given value of strain. The de- 
pendence of Q-1 on ~ is essentially a dependence of 
Q-1 on v at a given value of a. This implies that the 
study of internal friction during the process of plastic 
deformation can lead to an improved understanding 
of dislocation dynamics and strengthening mechan- 
isms. 
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Figure 6 The non-linear dependence of Q * on / : /m (all symbols 
coincide with those in Figs 4 and 5). (a) Changing m at constant 
"high" ~, (b) changing k at constant "low" m; (c) changing m at 
constant "low"/;;  (d) changing g at constant "high" m. e = 3%. 

5.2. Dependence of Q-~ on m 
The average velocity of mobile dislocations, v, is deter- 
mined by the effective stress ~ - ~0, where or0 is the 
back-stress dependent upon the density and distribu- 
tion of various crystal defects. In this investigation, 
v has two components: a steady undirectional com- 
ponent, Vo, and an alternating component, Va, due to 
the oscillation of the pendulum. The former is essen- 
tially unaffected by the frequency of IF measurement. 
In order to obtain the correct dependence of Q-  1 on ~, 
the influence of frequency will need to be separated 
from the effect of strain rate. 

As shown in Fig. 6, the dependence of Q- ~ on g/co is 
different when the measurement is carried out at high 
frequency (curve d), and at low frequency (curve b). 
Thus, a complicated theoretical analysis is required to 
obtain the correct interrelationship between Q - * and ~. 

5.3. Q-~ and dislocation dynamics 
Q-* versus e and ~ versus e curves can be measured 
simultaneously during plastic deformation. These 
curves can be converted into Q-  1 versus ~ and o ver- 
sus g curves. The functional relationship between dis- 
location velocity and cr can be deduced from the 
dependence of Q-  1 and ct on ~. This will be described 
in the following subsection. 

5.4. Functional relationship between v and c~ 
Consider a cylindrical specimen subjected to a tensile 
stress ~ parallel to the longitudinal axis. The resolved 
shear stress t applied to the slip system is given by 
t = npCr, where np is an orientation factor. If the alter- 
nating resolved shear stress applied during internal 
friction measurement is t ' =  ' to sin cot, where to is 
a constant, co is the angular frequency and t is the time, 
then the total resolved shear stress applied to the slip 
system is �9 + ~'. Since It'l < t, we have v = f ( t  + t ') 
and 

v -~ f(~) + df(t)dt v ' = v ~  + ~-~df(~)r' (4) 
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where v0 = f ( t )  is the steady unidirectional compon- 
ent of v parallel to the slip direction (see section 5.2). 

The vibrational energy per unit volume dissipated 
per cycle by the mobile dislocations is given by 

L A W = P m  bt 'vdt  

= pmb t' Vo + ~7-T r' dt 

df ( t )  f o  --~ pmb ~ - T  ( z ; ) 2  sin2 cot dt 

/d f (~)  / f ( t )~  r~9 

dlnf(~) ( ~ _ )  
- d r  (z{) )2  

where 9 = bpmvo is the plastic shear strain rate. Let the 
stress amplitude used in internal friction measurement 
be t{5. For longitudinal vibration, the resolved shear 
stress amplitude ~ equals npr~. The total vibration 
energy per unit volume may be written as W = (t~)2/ 
2E = (z{~)a/2~p 2 E, where /~p is an average orientation 
factor and E is the Young's modulus. 

For  torsional vibration, the resolved shear stress 
is "cb = n,~{5, where n, is the orientation factor for 
torsional stress. The total vibration energy per unit 
volume is W =  ('C'o)2/2fi2G, where nt is the average 
orientation factor and G is the shear modulus. 

Thus, for longitudinal vibrations the internal fric- 
tion during the process of plastic deformation is 

Q-1 d l n f ( t ) _  E~ 
- d r  np --co (5)  

For torsional vibrations, the internal friction during 
plastic deformation is 

G~ 

dt  \ t i p /  co 

_ dlnf(~)  ( r i2)  Ge (6) 
do  \~2p2] ~ -  

For b.c.c, metals, ~2/rip -~ 0.223 and -2 -2 n, ~rip ~- 0.5; for 
f.c.c, metals, rie/~p -~ 0.274 and r~2/g 2 -~ 0.85 [5]. Thus 

dlnf('c) g 
Q * = 0 . 8 5 ~ G c o  (7) 

If the Johnston-Gilman equation [8], v = f ( ~ ) =  
B'(~ - roY" = B(~ - ~o) m, is applied, we have 

Q-1 _ 0.85mG(~)c~_(so (8) 

If the other equation, v = v* e x p [ - ~ * / ( ~ -  ~o)], 
suggested by Gilman [9] and Zhang [7] is applied, 
then 

(cy - (So) 2 (9) 

where v* is a characteristic velocity (~< velocity of 
transverse sound wave) and cy* is a characteristic 
dragging force when v = v*/e. 



The dependence of Q-1 on ~/co in Equations 7 to 
9 is non-linear because the effective stress (cy-  Go) 
depends on ~. Different dislocation dynamics equa- 
tions give different expressions for Q- 1. What we have 
shown is-that the non-linear dependence of (2-1 on 
tensile strain rate and frequency can be explained on 
the basis of dislocation dynamics. 
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